Electron Microscopic Investigation of Liquid and Solid for Fenton Oxidation of Leachate

> Walter Z. Tang, Ph.D., P.E., Associate Professor Department of Civil and Environmental Engineering Florida International University, Miami, FL 33174 305-348-3046 (office) 786-350-0933 (cell) tangz@fu.edu

Joint TAG meeting at the NanoScience Technology Center (NSTC), 12424 Research Parkway Suite 400, Room 475 University of Central Florida, Orlando, FL 32826

July 13, 2012

Outline

- Problem Statement
- Liquid Hydrogen Peroxide Fenton
- Solid Calcium Peroxide Fenton
- Experiments
- Electron Microscopic Investigations
- Acknowledgments

Collecting Leachate

Preparing Leachate

Microscopic Aspects of Fenton Processes: Liquid vs. Solid Peroxides

- Raw leachate
- Leachate treatment options: liquid vs. solid peroxides
- Hydrogen peroxide system
- Calcium peroxide system
- Technical challenges
- Design criteria using solid vs. liquid peroxides

Statement of Problem

- No electron microscopic characterization of both leachate and CaO₂;
- Microscopic characterization of both leachate and CaO₂ provide insight into the oxidation mechanisms;
- Oxidation mechanisms may be unveiled through the change of composition of both leachate and sediments containing Ca after H₂O₂ is released.

Objectives

- To provide direct image of both leachate and CaO₂;
- To provide direct evidence of composition of leachate;
- To quantify the chemical composition of both leachate and CaO₂.

Characterization of Leachate

Conventional Pollutants in Typical Leachate

mg/L (except pH)						
	New Landfill	Mature Landfill				
Constituent	Range	Typical	(> 10 yrs)			
BOD ₅	2,000-30,000	10,000	100-200			
TOC	1,500-20,000	6,000	80-160			
COD	3,000-60,000	18,000	100-500			
Total suspended solids	200-2,000	500	100-400			
Organic nitrogen	10-800	200	80-120			
Ammonia nitrogen	10-800	200	20-40			
Nitrate	5-40	25	5-10			
Total phosphorus	5-100	30	5-10			
Ortho phosphorus	4-80	20	4-8			
Alkalinity as CaCO ₃	1,000-10,000	3,000	200-1,000			
рН	4.5-7.5	б	6.6-7.5			
Total hardness as CaCO ₃	300-10,000	3,500	200-500			
Calcium	200-3,000	1,000	100-400			
Magnesium	50-1,500	250	50-200			
Potassium	200-1,000	300	50-400			
Sodium	200-2,500	500	100-200			
Chloride	200-3,000	500	100-400			
Sulfate	50-1,000	300	20-50			
Total iron	50-1,200	60	20-200			

Relative Biodegradability of Leachate

Bio- degradability	BOD/COD	COD/TOC
Low	< 0.5	< 2
Medium	0.5 – 0.75	2 – 3
High	> 0.75	> 3

Raw Leachate without Filtration x110

Raw Leachate without Filtration x5,000

Mapping of Elements

Raw Leachate after Filtration x50

Raw Leachate after Filtration x100

Raw Leachate after Filtration x500

Classic Fenton Processes

Fenton Reaction Mechanism

$$\begin{split} & Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + HO^- \qquad k_{=55} (M^{-1}s^{-1}) \\ & HO^- + H_2O_2 \rightarrow HO_2^- + H_2O \qquad k_{H_2O_2} = 3.3^{*107} (M^{-1}s^{-1}) \\ & HO^- + Fe^{2+} \rightarrow Fe^{3+} + OH^- \qquad k_{Fe_{2+}} = 3.2^{*10^8} (M^{-1}s^{-1}) \end{split}$$

 $H_2O_2/Fe^{2+}O_{pt.} = k_{OH, Fe_{2+}}/k_{OH, H_2O_2} = 3*10^8/2.7*10^7 = 11$ (Tang 2004)

Biodegradability Enhancement

Number in the Set

SEM Image of Fe(OH)₃ at x100

SEM Image of Fe(OH)₃ at x300

SEM Image of Fe(OH)₃ at x500

Electron Mapping of Elements in Fe(OH)₃ Sediment

Electron Mapping of Sediments

Dominant Elements are Fe, O, and Cl by Electron Mapping

Secondary Elements are S, K, and Ca by Electron Mapping

Minor Elements are Al, Si, and C by Electron Mapping

Solid Peroxide Systems

Raw Leachate $CaO_2 + Fe^{2+} + leachate$ $CaO_2 + Fe^0 + leachate$ $CaO_2 + Fe^{2+}$ $CaO_2 + Fe^0$

Solid Peroxides

$CaO_2(s) + 2H_2O = 2H_2O_2 + Ca(OH)_2(s)$

Elemental Iron Powder

SEM Image of CaO₂at x500

ESM Image of CaO₂ at x2000

SEM Image of CaO₂ at x5000

Specific Points of the CaO₂ Sample

Electron Density of Ca and O

Chemical Composition

Table 1: Chemical composition by weight % at 4 different points of CaO₂

	C-K	O-K	Na-K	Al-K	Si-K	S-K	Cl-K	K-K	Ca-K
Base(128) _pt1	24.83	46.46	0.12	0.08	0.03	0.00	0.00	0.00	28.48
Base(128) _pt2	22.54	4 2 .33	0.10	0.15	0.44	0.00	0.00	0.00	34.45
Base(128) _pt3	10.07	27.69	0.02	0.05	0.19	0.00	0.00	0.00	61.98
Base(128) _pt4	18.50	38.56	0.02	0.22	0.51	0.00	0.00	0.07	42.13

Table 2: Chemical composition by Atom % at 4 different points of CaO₂

	C-K	O-K	Na-K	Al-K	Si-K	S-K	Cl-K	K-K	Ca-K
Base(128) _pt1	36.33	51.02	0.09	0.05	0.02	0.00	0.00	0.00	12.49
Base(128) _pt2	34.70	48.93	0.08	0.10	0.29	0.00	0.00	0.00	15.89
Base(128) _pt3	20.33	41.95	0.02	0.04	0.17	0.00	0.00	0.00	37.49
Base(128) _pt4	30.62	47.91	0.01	0.16	0.36	0.00	0.00	0.04	20.90

One Hour after Reaction

Taking Samples after Reaction

After 24 Hours

After 24 Hours

Leachaly Calozt Re# leachath caon + Feo

CaO₂ +Fe²⁺ + leachate

CaO₂ Atoms Spatial Distribution

Acknowledgements

• We greatly appreciate financial support by the Hinkley Center for Solid and Hazardous Waste Management at the University of Florida. We thank Professor John Shert and Tim Vinson for their constructive suggestions for our project and Mrs. Rhonda Rogers for administrative support.

Acknowledgements

- Dr. Debra Reinhart and Ms. Stephanie Bolyard at UCF
- Dr. Georgio Tachiev of the ARC at FIU
- Professor Yanqing Liu
- Dr. Anna Bricker
- Ms. Emma Lopez
- Mr. Richard Urban
- Ms. Allison Vo

Thanks to Our Research Team!

Thank You !