LANDFILL LEACHATE TREATMENT USING FENTON PROCESS: COD LOADING vs TREATMENT EFFICIENCY

Shrawan Singh, PhD

Post-doctoral Research Associate Department of Civil and Environmental Engineering Florida International University Miami, FL

TAG meeting at University of Central Florida, Orlando, FL

7/13/2012

OUTLINE

- Background
- Objectives
- Methodology
- Results
- Project outcomes

FENTON OXIDATION

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^{\bullet}$$

K₁= 76 M⁻¹s⁻¹

$$\begin{split} Fe^{3+} &+ H_2O_2 \to Fe^{2+} + HO_2^{\bullet} + H^+ & \text{K}_2 = 10^{-3} \text{ to } 10^{-2} \text{ M}^{-1} \text{s}^{-1} \\ RH &+ OH^{\bullet} \to H_2O + R^{\bullet} & \text{K}_3 = 10^7 \text{ to } 10^{10} \text{ M}^{-1} \text{s}^{-1} \\ OH^{\bullet} &+ H_2O_2 \to HO_2^{\bullet} + H_2O & \text{K}_4 = 1.2 \text{ x } 10^7 \text{ to } 4.5 \text{ x } 10^7 \text{ M}^{-1} \text{s}^{-1} \\ Fe^{2+} &+ OH^{\bullet} \to Fe^{3+} + OH^{-} & \text{K}_5 = 3 \text{ x } 10^8 \text{ M}^{-1} \text{s}^{-1} \end{split}$$

IMPORTANT PARAMETERS OF FENTON PROCESS

- Characteristics of leachate
- Operating pH condition
- Fenton reagents (H₂O₂ and Fe²⁺) dose ratio
- Fenton reagents absolute dose
- Reaction time
- Reaction temperature

FENTON PROCESS

LITERATURE REVIEW

Primary objective:

To determine optimum operating conditions for a specific leachate based on maximum organic matter removal

LITERATURE REVIEW: OPTIMUM FENTON PROCESS CONDITIONS

Parameter	Optimum pH	Optimum reaction time (minutes)
Number of studies	35	33
Average	3.4	241
Max	6.0	2,880
Min	2.5	10
Standard deviation	0.9	582
Median	3.0	60

LITERATURE REVIEW: OPTIMUM FENTON PROCESS CONDITIONS

Parameter	H_2O_2/Fe^{2+}	H_2O_2/COD_0
Number of studies	37	37
Average	5.4	9.1
Max	60.7	73.1
Min	0.5	0.01
Standard deviation	10.8	17.0
Median	1.8	1.2

COD LOADING vs TREATMENT EFFICIENCY

COD loading factor

 $L_{COD} = COD_0 / available O_2$ $= COD_0 / 0.47 H_2 O_2$

COD removal efficiency

 $\eta = \text{COD}_{\text{removed}} / \text{available O}_2$ $= \text{COD}_{\text{removed}} / 0.47 \text{ H}_2\text{O}_2$

'available O_2 ' is the theoretical amount of reactive O_2 equivalent to the added H_2O_2 .

PROJECT OBJECTIVES

- To determine generalized Fenton oxidation operating conditions for landfill leachate treatment.
- To determine the effect of Fenton oxidation on biodegradability of landfill leachate.

METHODOLOGY

LEACHATE COLLECTION

Pump Station A at Solid waste Authority Landfill Palm Beach County

LEACHATE CHARACTERIZATION

Parameter	Concentration
рН	7.52
D0 (mg/L)	2.64
Conductivity (mS/cm)	28.6
Total dissolved solids (mg/L)	19,066±757
Alkalinity (mg/L as $CaCO_3$)	2,345±57
TOC (mg/L)	777±73
COD (mg/L)	2,183±50
$BOD_5 (mg/L)$	151±50
BOD ₅ /COD	0.07

EXPERIMENTAL CONDITIONS

Experimental pH:

- **2.0**, **3.5**, and **6.0**
- Reagent dose ratio (H₂O₂/Fe²⁺)
 - 1.8
- Different initial COD
 - Leachate at different dilutions (1:8; 1:4; 1:2, and 1:1)
- Reagent absolute doses based on COD Loading factor (L_{COD})
 - 0.25, 0.50, 0.75, 1.0

EXPERIMENTAL PROCEDURE

EXPERIMENT

SAMPLE ANALYSIS

Shimadzu TOC-V_{CPH} Total Organic Carbon Analyzer

HACH COD digester and HACH-DR/850 Colorimeter

BOD analysis

COD loading factor

 $L_{COD} = COD_0 / available O_2$ $= COD_0 / 0.47 H_2 O_2$

Impact of initially adjusted pH on COD removal efficiency during Fenton oxidation

Impact of $L_{\mbox{\scriptsize COD}}$ on COD removal by oxidation

Impact of L_{COD} on COD removal by Fenton Process

COD oxidation efficiency

$$\eta = \text{COD}_{\text{oxidized}} / \text{available O}_2$$

= $\text{COD}_{\text{oxidized}} / 0.47 \text{ H}_2\text{O}_2$

Effect of L_{COD} on COD oxidation efficiency

COD removal efficiency

$$\eta = \text{COD}_{\text{removed}}/\text{available O}_2$$

= $\text{COD}_{\text{removed}}/0.47 \text{ H}_2\text{O}_2$

Effect of L_{COD} on COD removal efficiency

Effect of Fenton oxidation on biodegradability of leachate

Effect of Fenton processes on biodegradability of leachate

CONCLUSIONS

- L_{COD} can provide a significant information for determining the Fenton reagent dose.
- The relationship $\eta = 0.733 L_{COD} 0.182$ can be used to determine COD removal efficiency from landfill leachate at optimum Fenton process conditions without performing multiple experiments.
- Fenton process can quickly remove organic matter from landfill leachate. Approximately 50% COD was removed within 1 minute of Fenton oxidation at favorable conditions.
- L_{COD} of 0.75 provided optimum operating dose for leachate treatment using Fenton process.
- Fenton process significantly improves biodegradability of leachate.
- BOD₅/COD linearly increases at the start of Fenton oxidation.
- Fenton oxidation showed greater increase in BOD₅/COD than complete Fenton process.

PROJECT BENEFITS

- The results of the study will help the leachate treatment practitioners for determining Fenton reagent doses without performing multiple experiments on a specific landfill leachate.
- Practitioners can use L_{COD} of 0.75 as a Fenton reagent dose for optimum organic matter removal.
- If low biodegradability of landfill leachate is a major issue in a wastewater treatment facility, Fenton oxidation can provide a significant improvement in treatment performance.

ACKNOWLEDGEMENTS

- Hinkley Center for Solid and Hazardous Waste Management
- Ron Schultz, SWA, Palm Beach County, Florida
- Anna Bricker, PhD, FIU
- Richard Urbina, FIU
- Emma Lopez, FIU
- Allison Vo

QUESTIONS

Walter Tang, PhD, PE <u>tangz@fiu.edu</u>

Shrawan Singh, PhD <u>shrawan.singh@fiu.edu</u>

Project website:

http://www.tang.fiu.edu/hinkley-center-projects/